Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 60
1.
BMJ Open Respir Res ; 11(1)2024 Apr 24.
Article En | MEDLINE | ID: mdl-38663887

BACKGROUND: Four months after SARS-CoV-2 infection, 22%-50% of COVID-19 patients still experience complaints. Long COVID is a heterogeneous disease and finding subtypes could aid in optimising and developing treatment for the individual patient. METHODS: Data were collected from 95 patients in the P4O2 COVID-19 cohort at 3-6 months after infection. Unsupervised hierarchical clustering was performed on patient characteristics, characteristics from acute SARS-CoV-2 infection, long COVID symptom data, lung function and questionnaires describing the impact and severity of long COVID. To assess robustness, partitioning around medoids was used as alternative clustering. RESULTS: Three distinct clusters of patients with long COVID were revealed. Cluster 1 (44%) represented predominantly female patients (93%) with pre-existing asthma and suffered from a median of four symptom categories, including fatigue and respiratory and neurological symptoms. They showed a milder SARS-CoV-2 infection. Cluster 2 (38%) consisted of predominantly male patients (83%) with cardiovascular disease (CVD) and suffered from a median of three symptom categories, most commonly respiratory and neurological symptoms. This cluster also showed a significantly lower forced expiratory volume within 1 s and diffusion capacity of the lung for carbon monoxide. Cluster 3 (18%) was predominantly male (88%) with pre-existing CVD and diabetes. This cluster showed the mildest long COVID, and suffered from symptoms in a median of one symptom category. CONCLUSIONS: Long COVID patients can be clustered into three distinct phenotypes based on their clinical presentation and easily obtainable information. These clusters show distinction in patient characteristics, lung function, long COVID severity and acute SARS-CoV-2 infection severity. This clustering can help in selecting the most beneficial monitoring and/or treatment strategies for patients suffering from long COVID. Follow-up research is needed to reveal the underlying molecular mechanisms implicated in the different phenotypes and determine the efficacy of treatment.


COVID-19 , Phenotype , Post-Acute COVID-19 Syndrome , SARS-CoV-2 , Humans , COVID-19/complications , COVID-19/epidemiology , COVID-19/physiopathology , Female , Male , Middle Aged , Aged , Severity of Illness Index , Adult , Cohort Studies , Respiratory Function Tests , Cluster Analysis , Forced Expiratory Volume , Time Factors
2.
J Vasc Res ; : 1-8, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38631294

INTRODUCTION: During the first COVID-19 outbreak in 2020 in the Netherlands, the incidence of pulmonary embolism (PE) appeared to be high in COVID-19 patients admitted to the intensive care unit (ICU). This study was performed to evaluate the incidence of PE during hospital stay in COVID-19 patients not admitted to the ICU. METHODS: Data were retrospectively collected from 8 hospitals in the Netherlands. Patients admitted between February 27, 2020, and July 31, 2020, were included. Data extracted comprised clinical characteristics, medication use, first onset of COVID-19-related symptoms, admission date due to COVID-19, and date of PE diagnosis. Only polymerase chain reaction (PCR)-positive patients were included. All PEs were diagnosed with computed tomography pulmonary angiography (CTPA). RESULTS: Data from 1,852 patients who were admitted to the hospital ward were collected. Forty patients (2.2%) were diagnosed with PE within 28 days following hospital admission. The median time to PE since admission was 4.5 days (IQR 0.0-9.0). In all 40 patients, PE was diagnosed within the first 2 weeks after hospital admission and for 22 (55%) patients within 2 weeks after onset of symptoms. Patient characteristics, pre-existing comorbidities, anticoagulant use, and laboratory parameters at admission were not related to the development of PE. CONCLUSION: In this retrospective multicenter cohort study of 1,852 COVID-19 patients only admitted to the non-ICU wards, the incidence of CTPA-confirmed PE was 2.2% during the first 4 weeks after onset of symptoms and occurred exclusively within 2 weeks after hospital admission.

3.
Heliyon ; 10(6): e27964, 2024 Mar 30.
Article En | MEDLINE | ID: mdl-38533004

Aims: To describe pulmonary function 3-6 months following acute COVID-19, to evaluate potential predictors of decreased pulmonary function and to review literature for the effect of COVID-19 on pulmonary function. Materials and methods: A systematic review and cohort study were conducted. Within the P4O2 COVID-19 cohort, 95 patients aged 40-65 years were recruited from outpatient post-COVID-19 clinics in five Dutch hospitals between May 2021-September 2022. At 3-6 months post COVID-19, medical records data and biological samples were collected and questionnaires were administered. In addition, pulmonary function tests (PFTs), including spirometry and transfer factor, were performed. To identify factors associated with PFTs, linear regression analyses were conducted, adjusted for covariates. Results: In PFTs (n = 90), mean ± SD % of predicted was 89.7 ± 18.2 for forced vital capacity (FVC) and 79.8 ± 20.0 for transfer factor for carbon monoxide (DLCO). FVC was

4.
Chest ; 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38432552

BACKGROUND: The clinical phenotype of idiopathic pulmonary arterial hypertension (IPAH) patients has changed. Whether subgroups of patients with IPAH have different vascular phenotypes is a subject of debate. RESEARCH QUESTION: What are the histologic patterns and their clinical correlates in patients with a diagnosis of IPAH or hereditary pulmonary arterial hypertension (PAH)? STUDY DESIGN AND METHODS: In this this cross-sectional registry study, lung histologic examination of 50 patients with IPAH was assessed qualitatively by two experienced pathologists. In addition, quantitative analysis by means of histopathologic morphometry using immunohistochemistry was performed. Histopathologic characteristics were correlated with clinical and hemodynamic parameters. RESULTS: In this cohort of 50 patients with IPAH, a plexiform vasculopathy was observed in 26 of 50 patients (52%), whereas 24 of 50 patients (48%) showed a nonplexiform vasculopathy. The nonplexiform vasculopathy was characterized by prominent pulmonary microvascular (arterioles and venules) remodeling and vascular rarefaction. Although hemodynamic parameters were comparable in plexiform vs nonplexiform vasculopathy, patients with nonplexiform vasculopathy were older, more often were male, had a stronger history of cigarette smoking, and lower diffusing capacity of the lungs for carbon monoxide (Dlco) at diagnosis. No mutations in established PAH genes were found in the nonplexiform group. INTERPRETATION: This study revealed different vascular phenotypes within the current spectrum of patients with a diagnosis of IPAH, separated by clinical characteristics (age, sex, history of cigarette smoking, and Dlco at diagnosis). Potential differences in underlying pathobiological mechanisms between patients with plexiform and nonplexiform microvascular disease should be taken into account in future research strategies unravelling the pathophysiologic features of pulmonary hypertension and developing biology-targeted treatment approaches.

5.
Eur Respir Rev ; 33(171)2024 Jan 31.
Article En | MEDLINE | ID: mdl-38417969

Pulmonary hypertension (PH) is highly prevalent in patients with left heart disease (LHD) and negatively impacts prognosis. The most common causes of PH associated with LHD (PH-LHD) are left heart failure and valvular heart disease. In LHD, passive backward transmission of increased left-sided filling pressures leads to isolated post-capillary PH. Additional pulmonary vasoconstriction and remodelling lead to a higher vascular load and combined pre- and post-capillary PH. The increased afterload leads to right ventricular dysfunction and failure. Multimodality imaging of the heart plays a central role in the diagnostic work-up and follow-up of patients with PH-LHD. Echocardiography provides information about the estimated pulmonary artery pressure, morphology and function of the left and right side of the heart, and valvular abnormalities. Cardiac magnetic resonance imaging is the gold standard for volumetric measurements and provides myocardial tissue characterisation. Computed tomography of the thorax may show general features of PH and/or LHD and is helpful in excluding other PH causes. Histopathology reveals a spectrum of pre- and post-capillary vasculopathy, including intimal fibrosis, media smooth muscle cell hyperplasia, adventitial fibrosis and capillary congestion. In this paper, we provide an overview of clinical, imaging and histopathological findings in PH-LHD based on three clinical cases.


Heart Diseases , Heart Failure , Hypertension, Pulmonary , Pulmonary Arterial Hypertension , Humans , Hypertension, Pulmonary/diagnostic imaging , Hypertension, Pulmonary/etiology , Heart Diseases/complications , Fibrosis
6.
Diagnostics (Basel) ; 14(4)2024 Feb 14.
Article En | MEDLINE | ID: mdl-38396460

Serum biomarkers and lung ultrasound are important measures for prognostication and treatment allocation in patients with COVID-19. Currently, there is a paucity of studies investigating relationships between serum biomarkers and ultrasonographic biomarkers derived from lung ultrasound. This study aims to assess correlations between serum biomarkers and lung ultrasound findings. This study is a secondary analysis of four prospective observational studies in adult patients with COVID-19. Serum biomarkers included markers of epithelial injury, endothelial dysfunction and immune activation. The primary outcome was the correlation between biomarker concentrations and lung ultrasound score assessed with Pearson's (r) or Spearman's (rs) correlations. Forty-four patients (67 [41-88] years old, 25% female, 52% ICU patients) were included. GAS6 (rs = 0.39), CRP (rs = 0.42) and SP-D (rs = 0.36) were correlated with lung ultrasound scores. ANG-1 (rs = -0.39) was inversely correlated with lung ultrasound scores. No correlations were found between lung ultrasound score and several other serum biomarkers. In patients with COVID-19, several serum biomarkers of epithelial injury, endothelial dysfunction and immune activation correlated with lung ultrasound findings. The lack of correlations with certain biomarkers could offer opportunities for precise prognostication and targeted therapeutic interventions by integrating these unlinked biomarkers.

7.
Pulm Circ ; 14(1): e12316, 2024 Jan.
Article En | MEDLINE | ID: mdl-38274560

The correlation between hemodynamics and degree of pulmonary vascular obstruction (PVO) is known to be poor in chronic thromboembolic pulmonary hypertension (CTEPH), which makes the selection of patients eligible for pulmonary endarterectomy (PEA) challenging. It can be postulated that patients with similar PVO but different hemodynamic severity have different postoperative hemodynamics and exercise capacity. Therefore, we aimed to assess the effects of PEA on hemodynamics and exercise physiology in mild and severe CTEPH patients. We retrospectively studied 18 CTEPH patients with a mild hemodynamic profile (mean pulmonary arterial pressure [mPAP] between 25 and 30 mmHg at rest) and CTEPH patients with a more severe hemodynamic profile (mPAP > 30 mmHg), matched by age, gender, and PVO. Cardiopulmonary exercise testing parameters were evaluated at baseline and 18 months following PEA. At baseline, exercise capacity, defined as oxygen uptake, was less severely impaired in the mild CTEPH group compared to the severe CTEPH group. After PEA, in the mild CTEPH group, ventilatory efficiency and oxygen pulse improved significantly (p < 0.05), however, the change in ventilatory efficiency and oxygen pulse was smaller compared to the severe CTEPH group. Only in the severe CTEPH group exercise capacity improved significantly (p < 0.001). Hence, in the present study, postoperative hemodynamic outcome and the CPET-determined recovery of exercise capacity in mild CTEPH patients did not differ from a matched group of severe CTEPH patients.

8.
J Heart Lung Transplant ; 43(4): 580-593, 2024 Apr.
Article En | MEDLINE | ID: mdl-38000764

BACKGROUND: Long-term changes in exercise capacity and cardiopulmonary hemodynamics after pulmonary endarterectomy (PEA) for chronic thromboembolic pulmonary hypertension (CTEPH) have been poorly described. METHODS: We analyzed the data from 2 prospective surgical CTEPH cohorts in Hammersmith Hospital, London, and Amsterdam UMC. A structured multimodal follow-up was adopted, consisting of right heart catheterization, cardiac magnetic resonance imaging, and cardiopulmonary exercise testing before and after PEA. Preoperative predictors of residual pulmonary hypertension (PH; mean pulmonary artery pressure >20 mm Hg and pulmonary vascular resistance ≥2 WU) and long-term exercise intolerance (VO2max <80%) at 18 months were analyzed. RESULTS: A total of 118 patients (61 from London and 57 from Amsterdam) were included in the analysis. Both cohorts displayed a significant improvement of pulmonary hemodynamics, right ventricular (RV) function, and exercise capacity 6 months after PEA. Between 6 and 18 months after PEA, there were no further improvements in hemodynamics and RV function, but the proportion of patients with impaired exercise capacity was high and slightly increased over time (52%-59% from 6 to 18 months). Long-term exercise intolerance was common and associated with preoperative diffusion capacity for carbon monoxide (DLCO), preoperative mixed venous oxygen saturation, and postoperative PH and right ventricular ejection fraction (RVEF). Clinically significant RV deterioration (RVEF decline >3%; 5 [9%] of 57 patients) and recurrent PH (5 [14%] of 36 patients) rarely occurred beyond 6 months after PEA. Age and preoperative DLCO were predictors of residual PH post-PEA. CONCLUSIONS: Restoration in exercise tolerance, cardiopulmonary hemodynamics, and RV function occurs within 6 months. No substantial changes occurred between 6 and 18 months after PEA in the Amsterdam cohort. Nevertheless, long-term exercise intolerance is common and associated with postoperative RV function.


Hypertension, Pulmonary , Pulmonary Embolism , Humans , Exercise Tolerance , Pulmonary Embolism/complications , Pulmonary Embolism/surgery , Stroke Volume , Prospective Studies , Ventricular Function, Right , Hemodynamics , Endarterectomy/methods , Pulmonary Artery/surgery , Chronic Disease
9.
Am J Physiol Lung Cell Mol Physiol ; 326(1): L7-L18, 2024 01 01.
Article En | MEDLINE | ID: mdl-37933449

COVID-19-related acute respiratory distress syndrome (ARDS) can lead to long-term pulmonary fibrotic lesions. Alveolar fibroproliferative response (FPR) is a key factor in the development of pulmonary fibrosis. N-terminal peptide of procollagen III (NT-PCP-III) is a validated biomarker for activated FPR in ARDS. This study aimed to assess the association between dynamic changes in alveolar FPR and long-term outcomes, as well as mortality in COVID-19 ARDS patients. We conducted a prospective cohort study of 154 COVID-19 ARDS patients. We collected bronchoalveolar lavage (BAL) and blood samples for measurement of 17 pulmonary fibrosis biomarkers, including NT-PCP-III. We assessed pulmonary function and chest computed tomography (CT) at 3 and 12 mo after hospital discharge. We performed joint modeling to assess the association between longitudinal changes in biomarker levels and mortality at day 90 after starting mechanical ventilation. 154 patients with 284 BAL samples were analyzed. Of all patients, 40% survived to day 90, of whom 54 completed the follow-up procedure. A longitudinal increase in NT-PCP-III was associated with increased mortality (HR 2.89, 95% CI: 2.55-3.28; P < 0.001). Forced vital capacity and diffusion for carbon monoxide were impaired at 3 mo but improved significantly at one year after hospital discharge (P = 0.03 and P = 0.004, respectively). There was no strong evidence linking alveolar FPR during hospitalization and signs of pulmonary fibrosis in pulmonary function or chest CT images during 1-yr follow-up. In COVID-19 ARDS patients, alveolar FPR during hospitalization was associated with higher mortality but not with the presence of long-term fibrotic lung sequelae within survivors.NEW & NOTEWORTHY This is the first prospective study on the longitudinal alveolar fibroproliferative response in COVID-19 ARDS and its relationship with mortality and long-term follow-up. We used the largest cohort of COVID-19 ARDS patients who had consecutive bronchoalveolar lavages and measured 17 pulmonary fibroproliferative biomarkers. We found that a higher fibroproliferative response during admission was associated with increased mortality, but not correlated with long-term fibrotic lung sequelae in survivors.


COVID-19 , Pulmonary Fibrosis , Respiratory Distress Syndrome , Humans , Pulmonary Fibrosis/complications , Prospective Studies , Follow-Up Studies , Bronchoalveolar Lavage Fluid , COVID-19/complications , Respiratory Distress Syndrome/pathology , Biomarkers
10.
Circ Heart Fail ; 16(10): e010336, 2023 10.
Article En | MEDLINE | ID: mdl-37675561

BACKGROUND: Surgical removal of thromboembolic material by pulmonary endarterectomy (PEA) leads within months to the improvement of right ventricular (RV) function in the majority of patients with chronic thromboembolic pulmonary hypertension. However, RV mass does not always normalize. It is unknown whether incomplete reversal of RV remodeling results from extracellular matrix expansion (diffuse interstitial fibrosis) or cellular hypertrophy, and whether residual RV remodeling relates to altered diastolic function. METHODS: We prospectively included 25 patients with chronic thromboembolic pulmonary hypertension treated with PEA. Structured follow-up measurements were performed before, and 6 and 18 months after PEA. With single beat pressure-volume loop analyses, we determined RV end-systolic elastance (Ees), arterial elastance (Ea), RV-arterial coupling (Ees/Ea), and RV end-diastolic elastance (stiffness, Eed). The extracellular volume fraction of the RV free wall was measured by cardiac magnetic resonance imaging and used to separate the myocardium into cellular and matrix volume. Circulating collagen biomarkers were analyzed to determine the contribution of collagen metabolism. RESULTS: RV mass significantly decreased from 43±15 to 27±11g/m2 (-15.9 g/m2 [95% CI, -21.4 to -10.5]; P<0.0001) 6 months after PEA but did not normalize (28±9 versus 22±6 g/m2 in healthy controls [95% CI, 2.1 to 9.8]; P<0.01). On the contrary, Eed normalized after PEA. Extracellular volume fraction in the right ventricular free wall increased after PEA from 31.0±3.8 to 33.6±3.5% (3.6% [95% CI, 1.2-6.1]; P=0.013) as a result of a larger reduction in cellular volume than in matrix volume (Pinteraction=0.0013). Levels of MMP-1 (matrix metalloproteinase-1), TIMP-1 (tissue inhibitor of metalloproteinase-1), and TGF-ß (transforming growth factor-ß) were elevated at baseline and remained elevated post-PEA. CONCLUSIONS: Although cellular hypertrophy regresses and diastolic stiffness normalizes after PEA, a relative increase in extracellular volume remains. Incomplete regression of diffuse RV interstitial fibrosis after PEA is accompanied by elevated levels of circulating collagen biomarkers, suggestive of active collagen turnover.


Heart Failure , Hypertension, Pulmonary , Ventricular Dysfunction, Right , Humans , Hypertension, Pulmonary/surgery , Hypertension, Pulmonary/complications , Tissue Inhibitor of Metalloproteinase-1 , Fibrosis , Biomarkers , Endarterectomy , Collagen , Hypertrophy/complications , Ventricular Function, Right , Ventricular Dysfunction, Right/surgery , Ventricular Dysfunction, Right/complications , Pulmonary Artery/surgery
11.
Thorax ; 78(9): 912-921, 2023 09.
Article En | MEDLINE | ID: mdl-37142421

INTRODUCTION: Patients with COVID-19-related acute respiratory distress syndrome (ARDS) show limited systemic hyperinflammation, but immunomodulatory treatments are effective. Little is known about the inflammatory response in the lungs and if this could be targeted using high-dose steroids (HDS). We aimed to characterise the alveolar immune response in patients with COVID-19-related ARDS, to determine its association with mortality, and to explore the association between HDS treatment and the alveolar immune response. METHODS: In this observational cohort study, a comprehensive panel of 63 biomarkers was measured in repeated bronchoalveolar lavage (BAL) fluid and plasma samples of patients with COVID-19 ARDS. Differences in alveolar-plasma concentrations were determined to characterise the alveolar inflammatory response. Joint modelling was performed to assess the longitudinal changes in alveolar biomarker concentrations, and the association between changes in alveolar biomarker concentrations and mortality. Changes in alveolar biomarker concentrations were compared between HDS-treated and matched untreated patients. RESULTS: 284 BAL fluid and paired plasma samples of 154 patients with COVID-19 were analysed. 13 biomarkers indicative of innate immune activation showed alveolar rather than systemic inflammation. A longitudinal increase in the alveolar concentration of several innate immune markers, including CC motif ligand (CCL)20 and CXC motif ligand (CXCL)1, was associated with increased mortality. Treatment with HDS was associated with a subsequent decrease in alveolar CCL20 and CXCL1 levels. CONCLUSIONS: Patients with COVID-19-related ARDS showed an alveolar inflammatory state related to the innate host response, which was associated with a higher mortality. HDS treatment was associated with decreasing alveolar concentrations of CCL20 and CXCL1.


COVID-19 , Respiratory Distress Syndrome , Humans , Biomarkers , Bronchoalveolar Lavage Fluid , COVID-19/complications , Critical Illness , Ligands , Respiratory Distress Syndrome/therapy , Male , Female , Middle Aged , Aged
12.
J Am Heart Assoc ; 12(4): e027638, 2023 02 21.
Article En | MEDLINE | ID: mdl-36789863

Background Pulmonary endarterectomy (PEA) for chronic thromboembolic pulmonary hypertension improves resting hemodynamics and right ventricular (RV) function. Because exercise tolerance frequently remains impaired, RV function may not have completely normalized after PEA. Therefore, we performed a detailed invasive hemodynamic study to investigate the effect of PEA on RV function during exercise. Methods and Results In this prospective study, all consenting patients with chronic thromboembolic pulmonary hypertension eligible for surgery and able to perform cycle ergometry underwent cardiac magnetic resonance imaging, a maximal cardiopulmonary exercise test, and a submaximal invasive cardiopulmonary exercise test before and 6 months after PEA. Hemodynamic assessment and analysis of RV pressure curves using the single-beat method was used to determine load-independent RV contractility (end systolic elastance), RV afterload (arterial elastance), RV-arterial coupling (end systolic elastance-arterial elastance), and stroke volume both at rest and during exercise. RV rest-to-exercise responses were compared before and after PEA using 2-way repeated-measures analysis of variance with Bonferroni post hoc correction. A total of 19 patients with chronic thromboembolic pulmonary hypertension completed the entire study protocol. Resting hemodynamics improved significantly after PEA. The RV exertional stroke volume response improved 6 months after PEA (79±32 at rest versus 102±28 mL during exercise; P<0.01). Although RV afterload (arterial elastance) increased during exercise, RV contractility (end systolic elastance) did not change during exercise either before (0.43 [0.32-0.58] mm Hg/mL versus 0.45 [0.22-0.65] mm Hg/mL; P=0.6) or after PEA (0.32 [0.23-0.40] mm Hg/mL versus 0.28 [0.19-0.44] mm Hg/mL; P=0.7). In addition, mean pulmonary artery pressure-cardiac output and end systolic elastance-arterial elastance slopes remained unchanged after PEA. Conclusions The exertional RV stroke volume response improves significantly after PEA for chronic thromboembolic pulmonary hypertension despite a persistently abnormal afterload and absence of an RV contractile reserve. This may suggest that at mildly elevated pulmonary pressures, stroke volume is less dependent on RV contractility and afterload and is primarily determined by venous return and conduit function.


Hypertension, Pulmonary , Ventricular Dysfunction, Right , Humans , Hypertension, Pulmonary/diagnosis , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/surgery , Ventricular Function, Right , Prospective Studies , Chronic Disease , Endarterectomy/adverse effects , Pulmonary Artery/surgery
13.
J Pers Med ; 13(2)2023 Feb 01.
Article En | MEDLINE | ID: mdl-36836515

Long COVID is the persistence of one or more COVID-19 symptoms after the initial viral infection, and there is evidence supporting its association with lung damage. In this systematic review, we provide an overview of lung imaging and its findings in long COVID patients. A PubMed search was performed on 29 September 2021, for English language studies in which lung imaging was performed in adults suffering from long COVID. Two independent researchers extracted the data. Our search identified 3130 articles, of which 31, representing the imaging findings of 342 long COVID patients, were retained. The most common imaging modality used was computed tomography (CT) (N = 249). A total of 29 different imaging findings were reported, which were broadly categorized into interstitial (fibrotic), pleural, airway, and other parenchymal abnormalities. A direct comparison between cases, in terms of residual lesions, was available for 148 patients, of whom 66 (44.6%) had normal CT findings. Although respiratory symptoms belong to the most common symptoms in long COVID patients, this is not necessarily linked to radiologically detectable lung damage. Therefore, more research is needed on the role of the various types of lung (and other organ) damage which may or may not occur in long COVID.

14.
Perfusion ; 38(2): 418-421, 2023 03.
Article En | MEDLINE | ID: mdl-34962840

Tyrosine kinase inhibitors (TKI) are known to be highly effective in the treatment of various cancers with kinase-domain mutations such as chronic myelogenous leukemia. However, they have important side effects such as increased vascular permeability and pulmonary hypertension. In patients undergoing pulmonary endarterectomy with deep hypothermic circulatory arrest, these side effects may exacerbate postoperative complications such as reperfusion edema and persistent pulmonary hypertension. We report on a simple modification of the perfusion strategy to increase intravascular oncotic pressure by retrograde autologous priming and the addition of packed cells and albumin in a patient treated with a TKI.


Hematologic Neoplasms , Hypertension, Pulmonary , Pulmonary Embolism , Humans , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/surgery , Perfusion/adverse effects , Endarterectomy/methods , Hematologic Neoplasms/complications , Pulmonary Embolism/complications
15.
Autoimmun Rev ; 21(12): 103202, 2022 Dec.
Article En | MEDLINE | ID: mdl-36150433

Interstitial lung disease is an overarching term for a wide range of disorders characterized by inflammation and/or fibrosis in the lungs. Most prevalent forms, among others, include idiopathic pulmonary fibrosis (IPF) and connective tissue disease associated interstitial lung disease (CTD-ILD). Currently, only disease modifying treatment options are available for IPF and progressive fibrotic CTD-ILD, leading to reduction or stabilization in the rate of lung function decline at best. Management of these patients would greatly advance if we identify new strategies to improve (1) early detection of ILD, (2) predicting ILD progression, (3) predicting response to therapy and (4) understanding pathophysiology. Over the last years, positron emission tomography (PET) and single photon emission computed tomography (SPECT) have emerged as promising molecular imaging techniques to improve ILD management. Both are non-invasive diagnostic tools to assess molecular characteristics of an individual patient with the potential to apply personalized treatment. In this review, we encompass the currently available pre-clinical and clinical studies on molecular imaging with PET and SPECT in IPF and CTD-ILD. We provide recommendations for potential future clinical applications of these tracers and directions for future research.


Connective Tissue Diseases , Idiopathic Pulmonary Fibrosis , Lung Diseases, Interstitial , Humans , Tomography, X-Ray Computed/methods , Lung Diseases, Interstitial/diagnostic imaging , Lung Diseases, Interstitial/complications , Idiopathic Pulmonary Fibrosis/complications , Connective Tissue Diseases/complications , Molecular Imaging
16.
Lancet Haematol ; 9(9): e698-e706, 2022 Sep.
Article En | MEDLINE | ID: mdl-36055334

The International Consortium for Health Outcomes Measurement assembled an international working group of venous thromboembolism experts and patient representatives to develop a standardised minimum set of outcomes and outcome measurements for integration into clinical practice and potentially research to support clinical decision making and benchmarking of quality of care. 15 core outcomes important to patients and health-care professionals were selected and categorised into four domains: patient-reported outcomes, long term consequences of the disease, disease-specific complications, and treatment-related complications. The outcomes and outcome measures were designed to apply to all patients with venous thromboembolism aged 16 years or older. A measurement tool package was selected for inclusion in the core standard set, with a minimum number of items to be measured at predefined timepoints, which capture all core outcomes. Additional measures can be introduced to the user by a cascade opt-in system that allows for further assessment if required. This set of outcomes and measurement tools will facilitate the implementation of the use of patient-centred outcomes in daily practice.


Venous Thromboembolism , Consensus , Humans , Outcome Assessment, Health Care , Patient Reported Outcome Measures , Venous Thromboembolism/therapy
17.
Brain Commun ; 4(4): fcac195, 2022.
Article En | MEDLINE | ID: mdl-35938070

Neurological monitoring in sedated Intensive Care Unit patients is constrained by the lack of reliable blood-based biomarkers. Neurofilament light is a cross-disease biomarker for neuronal damage with potential clinical applicability for monitoring Intensive Care Unit patients. We studied the trajectory of neurofilament light over a month in Intensive Care Unit patients diagnosed with severe COVID-19 and explored its relation to clinical outcomes and pathophysiological predictors. Data were collected over a month in 31 Intensive Care Unit patients (166 plasma samples) diagnosed with severe COVID-19 at Amsterdam University Medical Centre, and in the first week after emergency department admission in 297 patients with COVID-19 (635 plasma samples) admitted to Massachusetts General hospital. We observed that Neurofilament light increased in a non-linear fashion in the first month of Intensive Care Unit admission and increases faster in the first week of Intensive Care Unit admission when compared with mild-moderate COVID-19 cases. We observed that baseline Neurofilament light did not predict mortality when corrected for age and renal function. Peak neurofilament light levels were associated with a longer duration of delirium after extubation in Intensive Care Unit patients. Disease severity, as measured by the sequential organ failure score, was associated to higher neurofilament light values, and tumour necrosis factor alpha levels at baseline were associated with higher levels of neurofilament light at baseline and a faster increase during admission. These data illustrate the dynamics of Neurofilament light in a critical care setting and show associations to delirium, disease severity and markers for inflammation. Our study contributes to determine the clinical utility and interpretation of neurofilament light levels in Intensive Care Unit patients.

18.
Front Immunol ; 13: 923869, 2022.
Article En | MEDLINE | ID: mdl-35865521

Positron emission tomography (PET) is a promising technique to improve the assessment of systemic sclerosis associated interstitial lung disease (SSc-ILD). This technique could be of particular value in patients with severe diffuse cutaneous SSc (dcSSc) that are possibly eligible for autologous hematopoietic stem cell transplantation (aHSCT). aHSCT is a potentially effective therapy for patients with severe dcSSc and ILD, leading to stabilization or improvement of lung function. However, there is a high need to improve patient selection, which includes (1) the selection of patients with rapidly progressive ILD for early rather than last-resort aHSCT (2) the prediction of treatment response on ILD and (3) the understanding of the mechanism(s) of action of aHSCT in the lungs. As previous studies with 18F-FDG PET in SSc-ILD and other forms of ILD have demonstrated its potential value in predicting disease progression and reactivity to anti-inflammatory treatment, we discuss the potential benefit of using this technique in patients with early severe dcSSc and ILD in the context of aHSCT. In addition, we discuss the potential value of other PET tracers in the assessment of ILD and understanding the mechanisms of action of aHSCT in the lung. Finally, we provide several suggestions for future research.


Hematopoietic Stem Cell Transplantation , Lung Diseases, Interstitial , Scleroderma, Systemic , Humans , Lung Diseases, Interstitial/complications , Lung Diseases, Interstitial/diagnostic imaging , Lung Diseases, Interstitial/therapy , Positron-Emission Tomography , Scleroderma, Systemic/complications , Scleroderma, Systemic/diagnostic imaging , Scleroderma, Systemic/therapy , Transplantation, Autologous
19.
Am J Respir Crit Care Med ; 206(7): 846-856, 2022 10 01.
Article En | MEDLINE | ID: mdl-35616585

Rationale: Bacterial lung microbiota are correlated with lung inflammation and acute respiratory distress syndrome (ARDS) and altered in severe coronavirus disease (COVID-19). However, the association between lung microbiota (including fungi) and resolution of ARDS in COVID-19 remains unclear. We hypothesized that increased lung bacterial and fungal burdens are related to nonresolving ARDS and mortality in COVID-19. Objectives: To determine the relation between lung microbiota and clinical outcomes of COVID-19-related ARDS. Methods: This observational cohort study enrolled mechanically ventilated patients with COVID-19. All patients had ARDS and underwent bronchoscopy with BAL. Lung microbiota were profiled using 16S rRNA gene sequencing and quantitative PCR targeting the 16S and 18S rRNA genes. Key features of lung microbiota (bacterial and fungal burden, α-diversity, and community composition) served as predictors. Our primary outcome was successful extubation adjudicated 60 days after intubation, analyzed using a competing risk regression model with mortality as competing risk. Measurements and Main Results: BAL samples of 114 unique patients with COVID-19 were analyzed. Patients with increased lung bacterial and fungal burden were less likely to be extubated (subdistribution hazard ratio, 0.64 [95% confidence interval, 0.42-0.97]; P = 0.034 and 0.59 [95% confidence interval, 0.42-0.83]; P = 0.0027 per log10 increase in bacterial and fungal burden, respectively) and had higher mortality (bacterial burden, P = 0.012; fungal burden, P = 0.0498). Lung microbiota composition was associated with successful extubation (P = 0.0045). Proinflammatory cytokines (e.g., tumor necrosis factor-α) were associated with the microbial burdens. Conclusions: Bacterial and fungal lung microbiota are related to nonresolving ARDS in COVID-19 and represent an important contributor to heterogeneity in COVID-19-related ARDS.


COVID-19 , Microbiota , Respiratory Distress Syndrome , COVID-19/complications , Critical Illness , Humans , Lung/microbiology , Microbiota/genetics , RNA, Ribosomal, 16S/genetics , Respiration, Artificial , Tumor Necrosis Factor-alpha
20.
J Heart Lung Transplant ; 41(8): 1130-1133, 2022 08.
Article En | MEDLINE | ID: mdl-35641423

Chronic thromboembolic pulmonary hypertension (CTEPH) has a poor prognosis if left untreated but can be cured by pulmonary endarterectomy (PEA). Massive endobronchial pulmonary hemorrhage is a potentially fatal complication of PEA, occurring in 0.5%of patients. We describe the use of an endobronchial blocker (EBB) as an additional method to successfully treat massive, focal pulmonary hemorrhage during PEA.


Extracorporeal Membrane Oxygenation , Hypertension, Pulmonary , Pulmonary Embolism , Chronic Disease , Endarterectomy/methods , Extracorporeal Membrane Oxygenation/methods , Hemorrhage/etiology , Hemorrhage/surgery , Humans , Hypertension, Pulmonary/complications , Hypertension, Pulmonary/surgery , Infant, Newborn , Pulmonary Artery/surgery , Pulmonary Embolism/complications , Pulmonary Embolism/surgery , Treatment Outcome
...